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ABSTRACT
3".; In order to investigate the nature of hydrodynamic interaction between two ( or more )
cylinders subjected to essthquake ground motion, a numerical analysis for determining (he
hydrodynamic forces and the corresponding structural responses on 8 non-axisymmetrical
3 offshore structure is presented.
a With the assumption of potentisl flow theory, the finite element method is developed 1o
: solve the boundary value problem in fluid domait. Morteover, the principle of symmetry snd
: antisymmetry is applied to the problem such that the fluid domain csn be reduced 0 one half.
i A localized finite element method utilizing eigenfunction expansions is also outlined in detail.
- If the cylinders have uniform cross sections, the three-dimensional problem can be reduced to a
two-dimensional one and the computation becomes much more efficient. A computer program
) 3 is develcped to analyze the hydrodynamic forces and the structural tesponses according to the
above mentioned analysis procecure. Examples are presented 10 illustrate the points discussed.
- Comparing with the experiments of a physical model on an earthquake simulator, the results
are generally in agreement.
From the results of the research, we arrive at the coaclusion that the hydrodynamic -
] interaction is relevant as the cylinders are closer. Also, this phenomenon depends on the
e - _
o characieristics of structures, water depth, the excitation frequency, the amplitude of ground
_ motion, and the direction of excitation.
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I. INTRODUCTION

Due to the development of offshore engineering in recent years, the need for an
improved understanding of the effects of hydrodynamic forces on offshore structures becomes
increasingly evident. The problem of a single vertical cylinder suojected to the hydrodynamic
forces produced by surfaze waves, carthquake motions, and cﬁrrents is reasonably well under<
stood {1,2'*; “owever, the hydrodynamic interaction between two { or more } cylinders under
these same conditions is not so well understood. Since most often offshore platforms have
three or four cylindrical legs and they often support clusters oi‘ parailel riser pipes, this iﬁtene—

tion was selected as the topic of the investigation reported herein,

A Review of Past Work

Hydrodynamic forces on rigid bodies placed in.a fluid bave been a classic problem in the
field of fluid dynamics [3,4,5]. An important paper by Morison et. al., discussed the problem
of wave forces on a rigid_ vertical cylinder from the point of view of engineering [6]. An
empiricai formulz for predicting wave forcss was given in this paper which has been widely
used in the design of offshore structures [7 3,9,10). .

In a study of the hydrodynamic forces on cyiinders and piales in an gacillating _ﬂuid. Keu-
legan and Carpenter introduced a new parameter for describing fluid behavi;)r which now is
called the Keulegan-Carpenter number {111,

Diffraction theory is another approach 1o finding hydrodynamic forces caused by wave
diffraction and radiation [12). An even niore general method is to use an integral equation

formulation which can be applied to bodies of arbitrary shape [13,14]. This formulation is the

basis of the Green’s function technique for solving the problem of fluid-structure interaction,

Many hyd:odynamic problems have been soived by this formulation, e.g. (1) the radiation

problem of an elliptical cylinder oscillating at the free surface (15], (2) wave forces on vertical

* The numbers in [ } refer to the corresponding iterns under "REFERENCES®.
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2

axisymmetrical bodies [16], (3) wave forces on large bodies of arbitrary shape [17,18.19,201,
/ ] and (4) wave induced forces on various bodies in the diffraction regime [21]. The major
N difficulty in using the Green's function method is 10 evaluate the kerne! in the integral equ-

tion formulation. The finite element method has been used to evaluate the kernel function by
assuming a linear variation of source strengih over esch element [22,23). Al iavestigations
o mentioned above are based 0a the assumptions that the submerged body is rigid and the fluid
- is Iuﬂsid and incompressible, |

Another technique for treating diffraction 1heory is to apply the finite eiement method 10
the governing differential equation directly. This method was introduced by Zienkiewicz, Iron
and Nath on submerged structures [24]} and by Zienkiewicz and Newton on fexible structures
in compressible fluids [25]. The problem of earthquake fesponse of sn axisymmetrical tower
surrounded by water was studied by Liaw and Chopra [26]. The effects of the diffracted sur-

face wave and the compressiblity of the water are shown to be smali in this case,

Bai and Yeung considered the three-dimensional and axisymmetrical decaying behavior
of the local fluid disturbance caused by the ,.esence bf a rigid structure {27} A localized finite

element method was suggested which combined a ﬁnite' element near field with an analytic

solution of the far field 1o reduce the size of the fluid domain directly treated [28). Mei [29]

and Taylor {20] also discussed the sams 2sscsst undor the name of Bound ¥ serizs mathod,

The spplication of this approach has been made by. (1 Chen and Mei for ship wave and steady
free-surface flow problems [31,32), (2) Bai for steady uniform ﬂﬁw in a canal (33}, (3) Hall on
arch dam [34), and {4) Nilrat for submerged axisymmetrical bodies [35]. The uniqueness of
this apprﬁach has been proved by Aranha, Mei and Yue [36).

Using infinite elements is another approach to representing the radiation bouadary condi-

tion ie an unbounded fluid domain. Zienkiewicz and Bettess presented the numerical solution

. of diffraction and radiation of surface waves by using a combination t_)f finite elements in the
near fieid and infinite elements in the far field [37,38). The shape function used in the infinite

elements has an exponentially decreasing term in the direction away from the inne: region.
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However, the solutions were too sensitive wth the choice of the decay length.

The fluid interaction produced between tvo { or more ) cylinders hus been investigated
only in recent years, Spring and Monkmeyer considered the interaction of incident plane
waves with vertical cylinders [39,40]. Yamamoto calculated the hydrodynamic forces on a
group of cylinders due to uniform flow or long waves {41,421, Isaacson studied the interfer-
ence effect between large cylinders in a wave by diffraction theory and through experiment
{43,44). Chakrabarti extended the work of Spring and Monkmeyer for three and four
cylinders {45]. In the study reported herein, the hydrodynamic forces on rigid cylinders sub-
jected to plane waves are treated. The results presented show the manner in which interaction
effects become important as the cylinders get closer together and they show how the hy_dro-

dyﬁamic forces varvy periodically with respect to the incident wave length.

B. Objective and Scope

The objective of this research is to davelop & general and effective procedure to investi-
gate the effects of hydrodynamic interaction between vertical flexible cylinders subjected to

ground motion in different directions.

The structure-fluid system is conside.red as a combiﬁation of two subsystems which are
the cylinders and the surrounding water. The dynamic responses of the cylinders are coupled
with the associated hydrodynamic forces. In terms of modal coordinates of structural vibra-
tion, the amplitudcs of the hydrodynamic forces are found by solving & boundary value prob-
lem in the frequency domain. Eﬂ'écts of surface waves are also examined. All lhéoretical con-
siderations are based on Steady state vibration conditions. The more general cases of transient
state or random vibrations in time demain can in principle be obtained by Fourier integrals

from frequency domain for all frequencies.

Two separate cylinders having arbitrary shapes are assumed and the fuid domain is
modelled by using three-dimensional finite elements. A special case of uniform cylinders is

also considered such that the vertical variation of hydrodynamic pressure can be expanded into
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_ a set of orthogonal functions; thus, reducing the boundary value problem in the fluid domain

i into a two-dimensional problem. A modification of localized finite element method is applied

to this probiem.

A brief survey of this research is as follows. Chapter I investigates the nature of
structural-fluid interaction. Chapter 1If establishes the mathematical models for both structural
system and the surrounding fluid. Chapter IV derives the numerical procedures to evaluate
the smplitude of hfdrodynamic pressures in terms of the structural responses. .Chaptcr v
presents three examples in depth to illustrate the points discussed in the previous chapters.

The conclusions are made in Chapter V1.
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I1. STRUCT URE-FLUID INTERACTION

Structure-fluid iﬁteraction is the coupling between structure response and fiuid forces.
For structures surrounded by water, hydrodynamic forces are often produced by wave action,
cﬁrrem flow of garthquake ground motions. 'I‘hese forces are defined in terms of relative
motions between the structure and its surrounding fluid. The distribution of hydrodynamic
pressures for low frequency incident waves is sngmﬁmnt only neat thﬁ surface while the distri-
pution of hydrodynamic pressures for high frequency ground motion increase with depth. The
dynamic responses for structures subjected to ground motion become important especially in

decp waler,

A Morison’s Equation- '

As mentioned in the last chaptet, lhis hyﬂrodynamic force equation i§ essentially an
empirical formula pased on wave theory and confirmed by expenments [46). '

The force exerted by an unbroken surface wave on-8 single vertical cylinder extending
from the bottom ypward beyond the wave crest, can be represented in two parts {1} a drag
force proportional to the square of the velocity and (2) a virtual mass force proportional to the
horizontal relative component of acceleration between water particle and. cylinder. T@o
cocfficients are involved in the formulation, namely the drag coefficient, K, and the added
niass coefficient, K-

For a rigid cylinder, Morison’s equation takes the form
F = VMK pA jali + Knp Vii : 2.1)
where p is the mass density of fiuid, 4 is the projected area perpendicular 1o the water particle

velocity #, # is the water particle acceleration and ¥ is the volume of ﬂmd displaced by the

cylinder.
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~This equaticn can be easily applied fo a structure pfoviaed the drag and added mast
coefficients are known. Many experiments have been perfonncd to evaluate these coefficients
for different structural configurations [47]. Table 2.1, after Bea and Lai, shows representative
from experime.nml results using vaiues of K, and K, derived from different wave theories
[48].
The drag force can be interpreted as a combination of influencing factors. One of these

being the viscosity of the fluid which produces a boundary layer on the cylinder. The other

" being the streamline separation which causes a dectease in pressure behind the cylinder. In

the later case the wake behind the cylinder is essentially a region of dead water or vortices. For
smal! amplitude displacements of the cylinder relative to fluid, separation of streamlines dos=s

not oceur; thus, drag forces are small for fluids of low viscosity st.ch as water,

B.  Diffraction Theory

This theory descrihes the potential flow which results when drag for_ces are neglected. It
is formulzted in terms of a boundary value problem after making assumptions as follows: (1)
small amplitude motion, (2) linear free surface boundary condition, and (3} inviscid fluid with
irrotational motion, Because of the first and third assumptions, the drag term in Bemnoulli’s
equation can be neglected. A relation between hydrodynamic pressure p° and velocity-

potential @ can then be established in the thrée-dimensional form,

P ixy,zit) = —pﬂ-(%;"—”—:ﬂ . 2.2

The advantage of using pressure p"(x,y,z:t) as the independent variable in the fluid is that the
resultant hydrodynami. forces on the structure can be found directly by integration. The
second assumption is an. apﬁroximation leading to a linear effect in the free surface houndary
condition. It becomes significantly in er~or for shalfow water subjected to large amplitude sur-
face waves. It is sufficient here, however, t0 consider only the linear formulation 1esulting

from the simplified boundary conditions since high order components for nonlinear conditions
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die out rapidly with respect to water depih and since a more complicat:  boundary condition
could be represented by applying the principle of superposition 10 linear surface conditions.
The thitd assumption atlows the application of pot:mi#l flow theory. The fluid is considered

continuous and tlie eddies and wakes ars neglected for low Reynold number.

To solve the houndary vnlu_e problem for potential flow, three general approaches have
been used, namely the multiple scattering method, the Green's function method, and the
finite element method. The multiple scattering method can be applied to the rigid vertical
cylinders easily [12,39,40}. With a known form of diffracted ve.ocity potential and an unk-
nOWT; coe_iﬁciem fof a single rigid cylinder, the interaction among multiple ¢ylinders can be
found by superposing the veiocity potential of eich cylinder and matching the kinematic boun-

dary conditions on ail interfaces of the cylinders. As mentioned earlier, the Greeu's function

method is suitable for structures of arbitrary shapes. Two steps are involved in this method.
The first step involves finding a source distribution function f on the immersed surface of the
structure by using the following integral Eq. (2.3). This function is usually evaluated numeri-

cally using the same concept as the finite element formuiation [22,23). The governing equa-

tion is giver: by

1 0BG |
flx.y,2)} + e J‘-[f(f,n.i) n (xJ,2:8 .0 ds = 24, (x,y,2) 2.3)
]
where g—f is the derivative of Green’s function in the outward normal direction, G is the ker-

nel of Green’s function as derived by Wehausen and Laitone [13]. Both (e y,2) and (£,9.0)

deniote the points on the interface. The velocity normal to the interface is given by i, = ég.

dn
The second step involves calculating the velocity potential for the immersed sunace

using the equatior:

>~ ;l; J ,!- SEND G,z Q4
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The sbove formulations are limited in frequency domain while 8 complete discussion of the
Green's function method has been published by Garrison (20} so it will pot be included

herein.

The third method of treating fluid-structure interaction is to aﬁply the ﬁnite element
technique directly to the original differential equation. Compared with the conventionsl
Green's function method, the finite element method has the definite advanuie 1hat the com-
putations are fairly simple. This simplicity results from using panded matrices, transmitting
boundaries and infinite elements. As shown subaequcnﬁy. the finite element method for treat-

ing Qluig-structure interaction is both efficient and flexible.

C.  Limitations of Diffraction Theory

Hydrodynamic pressures on 2 submerged structure can be obtained by applying
diffraction theory 10 the fluid domain. Diffraction theoty is limited however due 10 the basic
assumptions which have been discussed previously. It can be shown that the ratio of tue
cylinder diameter, D, to the wave length, L, categories the possible types of flow behavior.

This parameter indicates the degree 10 which vortex sheddings are able to develop. Fof

-l-z— » 0.2, viscous flow effects are small so that the hydrodynamic effects are caused by scatler-

ing or diffraction due 10 the presence of structure a8 ¢hown in Fig. 2.1 2l

Another important parameter as shown in ﬁﬁ. 2.3 152} is the Keulegan-Carpenter
qumbet, K. = % where T is the period of the wave, i is the water particle velocity, and D

js the diameter of the cylinder. Fo: large value of K. , when water particle scceleration is
srm;ll. inertia effects are negligible such {hat hydrodynamic force approaches to the drag force
for cytinder in steady flow. For small value of K. (K, <12 approx.), the drag force is negligi-
ple such that hyd-odynamic force vecomes the pure inertia force 1211, A detailed discussion

about the r_elaliouship for the drag coefficient or added mass coefficient v.s. the Keulegan-

Carpenter aumber ¢an be found from Sarpkaya (491,



E- lq._._....,... et e e e g 3 R R TR PR TR e it s e e e e e e e . i i

|
4 ) ' ’
} Considering the case of earthquake loading in high frequency excitation in deep water,
1 the induced surface wave height becomes very small and the ratio of % is always greater than -
] 1' 0.2 a3 skowm in Fig. 2.1. Furthermore, because the drag force decmeses.with distance below
i the susface more rapidly than does the inertia force [6], it is reasonable to neglect the drag
3 force in the analysis and compute the bydrodynamic forces by the diffraction theory.
1
]
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K <2
No separation, amplitude of motion is less
than cylinder diameter

1< K <1
Small separation, no eddy development yet

K. =3
First eddy shed, asymmetry starts, lift force
begins 10 be non-zero

J< K <4
More than 2 eddies shed within haif cycle (
Von Karman street )

S K. <7 :
Wake becoming turbuiemt, additional
eddies caused by wake when swept back

7T < K,'
Extremely turbutlent

Wake Characteristics as a Function ot Keulegan-Carpenter Number [52]
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Force Coefficients
: Wave Theory K, K Remarks
1
]
Linecar Theory 1.00 0.95 Mecan values from ocean wave data
_ on 13 and 24 in. diameter cylinders
1.00-1.40 200 Recommanded design values based
! on a siatistical analysis on published
: daia with a 93% confidence level
Linear Fultering 0.60 1.50 Mesn vaiues from wave force data
based on highest 50% of measured
‘ peak forces
: , Stokes Third Order LM 1.46 Mean values from laboratory oscitla-
: tory flow on 2 10 3 in. diameter
f <, .inders
: Stckes Fifth Order 0.57 10 Mean values from a statistical
! analysis
0.50 1.20 Mean values from wave force data
of sma:l waves ai 30 fi. water depth
0.58 1.7 Mean values from wave force data |
of large waves at 100 M. water depih
0.80-1.00 200 Recommanded design vaiues based
on a statistical analysis of published
data with a 98% confidence level

Table 2.1 Wave force coeflicients { K, and K, ) for a ¢ylindrical member structure as per-
taining to application of the Morison equation based on different wave theories
148}
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HI. MATHEMATIC MODEL

In dealing with thls comphcaled structure‘hyurodynatmc interaction problem, it is neces-
sary to make several slmphﬁcaucns The complexity of the resuiting theory depends greatly
on the assumed flexibility and desrees of freedom of the structure. In the following develop-
#nu we will investigate four separate cases: |

(1) Rigid cylinder on rigid foundation

(2) Rigid cylinder connected flexibiy to rigid foundation

(3)  Flexible cylinder on rigid foundation

(4) Flexible c;vlinder on flexible foundation

As shown in Fig. 3.1, type (4) is the most realistic model for the offshore structures

which are fixed at sea bottom. Either type (2) or type (3} is a better approximation than type

(1) which is the most typical model used in the literatures and a special case to all the others.

The discussions in this chapter are devoted to the evzluation of structural responses.
The basic equation of motion of structure is discussed in section A. The Loundary vailue prob-
lem in the fluid domain is outlined in section B. The strﬁctural responses of type {2) rigid
cylinders are discussed in section C and the type (3) flexible cylinders are discussed in section

D. Fig. 3.2 shows the cylinders in the fiuid and the associated coordinate system.

A.  Equation of Motion

Planar vibration of two circular cylinders subjected to horizontal ground acceleration is

considered. The equation of motion for the cylinders can be expressed as

M U D+C U D+K U0 = =M i (d=F"() G.1)

where i, is the horizontal ground acceleration, r is the pseudostatic influepce-coefficient vee-

tor, the displacement of structural degrees of freadom is

St S i, 550l i T L il
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, ' the mass matrix of structure is '
! M O )
' M= 0 M (.2.b
the damping matrix of structure is
oole e |
; f L™ g g} ) ‘J.Z.C)
the stiffoess matrix of structure is
1 . gt e
E=lo &2 (3.2.0)

the corresponding hydrodynamic forces are
. Fl
F=- ;-z 3.2.¢)

and the superscripts 1 and 2 refer to the first and the second cylinder respectively. In the above
expressions, M/, €/, K/ are structural characteristics of the j-th cylinder, while the hydro-

dynamic force £/ on the j-th cylinder is a function of structural responses for ali the cylinders.

If the distance between cylinders is far enough, the effect of interaction between the
cylinders will become small. In this case, the equation of motion (3.1} may be uncoupled into .
two separate eguations. In terms of structural responses, the amplitude of hydrqd?namic

forces can be found by applying the diffraction theory. Then the structural responses may be

solved by Eq. (3.1).
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B Hydrodynmhic Forces

1. Boundary Value Problem in Three Dimensions

Assuming the water to be inviscid, the small amplitude irrotational motion in Duid

domain is governed by three-dimensional wave equation:

V%5 ey nt) - —(,1:-3- g—éz.’%(x.y.:;r) 3.3

where C is the velocity of sound in water { C = 4720 ft per second).

Simplification can be made by assuming that the water is incompressible, i.e. neglecting

the right hand side of Eq. (3.3). Thus, the following Laplace’s equatiun is obtained.
T, (x50 =0 (3.4

where ®,° is the radiated velocity petential in fuid domain caused by the vibration of

cylinders.

In a linear gystem, it is appropriate and sufficient to consider harmonic ground accelera-

tion of the form

g7} = i (w) e~
The dynamic responses can also be expressed in {requency domain. Linearity assumes that
this motion has the same frequency, w, as the ground motion excitation. Thus,

Do (x,y. 2,1} w Dplx,y, 1) e~

Applying the relationship in Eq. (2.2), Laplace’s equation {3.4) becomss

Viplx,y,2} =0 _ (3.5

R B P B T e T R i L il
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where p{x.y,2) is the hydrodynamic pressure in fuid.

The boundary condition at the bottom is
ﬂﬂ(x' y0) =0 (3.6.2)
LH : .
it is assumed that the waves are of small amplitude, so that the dynamic and Kinematic boun-

dary conditions can be linearized to yield the following condition at the undisturbed free sur-

face as

, .
g{z(x.y.h) - 9;— plx.y.n) =0 (3.6.b)

At the far field, water extends 10 infinity in the radial direction. We insist that waves are out-
going ¢ away from the cylinders ) and the following radiation condition caq be azpplied to the

problem.

lim R (%E(R.z) — ik p(R,2)) = 0 (.6.c)

where R = (x2y)% and k is the wave number which can be solved from the linearlized

dispersion relation,

wl= kg tanh kh

The kinematic boundary condition on the interface of structure and the fluid is .

8p __. % - ' '
an {x,y, ;) o -é?coso _ (3.6.d)

where p is the mass density of waler, p{x,y,z) is the hydrodynamic pressure on the interfac:

e o - o A b o e e oy

of cylinders, and w is the frequency dependent horizonial interface displacement at 8 = 0 as

LR SR PPN EY |
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shown in Fig. 3.2

The radiated wave propagating outward to infinity can be expressed as [13]:
®{x,»,2) oo cosh(kz} H,""(kR) cos(nd —~ 8} (3.7
where & is the direction of incident wave or ground motion, H," is the Hankel function of

the first kind of order n, and k is the wave number. The asymptotic expansion of the Hankel

function for large value of R is

LA

O(LR) = (24, BT,  nt1/4 -5
H (kR _(rkR) € f1 r'm—]'!'O(R 3 {3.8)

Substituting this relation into Eq. (3.7), the following expression can be derived;

o _ . 1. —5/
3R (2R+:k)¢+O(R ] (3.9)

This equation is consistent with the radiation boundary condition (3.6.c) and will be applied to
the boundary value problem in Eq. (3.5) with the other boundary conditions Egs.

(3.6.&).(.':_.6.b) and (3.6.d).

2. Boundary Value Problem in Two Dimensions

If the cylinders have uniform cross seciion in Z-direction this problem can be reduced

into two dimensions by separation of variables,

2(x,».2) = p{x,y) F(2} 3.10)

and the Eq. (3.5} is separated into two equations;

Vip(x,y) - Ap(x,y) = 0 : _ (3.11.2)
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and
i -
L) 42D =0 G.11.b)
ot
E
! When Eq. (3.10) is inserted into the boundary conditions (3.6.a) and (3.6.b), the follo- -ug
expréssions result;
Lo
P %
P plxy,2) = Teplxy) ¢ fz) - .12
P ' =0 ' '
P
N with
: V5(x,y) + ko?polx,y} = 0 (3.13.2)
! = Fog tanh koh (3.13.b)
wol2) = cosh ko2 (3.13.0)
| ' :
‘ : andfort 21,
V(%) = kP x,y) =0 S cRE Y]
w? = —kg tan kih G.13.¢)
;_ ¥, (2) = cos &z ' (3.13.0
' whete n, is the number of wave modes.
i Thus the interface boundary {3.6.d} and the radiation boundary (3.9) are the only two
conditions to be considered in a two-dimensional problem shown in Eqs. (3.13.a-f).
Considering the incompressibility of water and the high {requency w_avé generated by

earthquakes, the corresponding wave lengths are very short. For slender cylinders and small

A e A o . T b e e R Y R 3 i ¥ ot e K ot vt e, |
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amplitude displacement (26], the problem can be simplificd by reducing the surface boundary
condition to
A Plx.y,h) =0 _ (3.14.2)
[P and the radiation bbuudnry condition {o
i .
8200 0w .
i au(x.y.z) 0 (3.14.0)
where # is the unit vector normai to the far field boundary.
A reduced two-dimensional boundary value problem is discussed in Appendix A in detail.
In this case, we have the following decomposition
.o
Plx.y,2) = 3 cplx,y) w,(2) (3.15)
=l
with
T5x,p) — kB ix,y) =0 (3.16.2)
K -'(:-—;-)sr o (3.16.6)
! and
¥, (z) = cosk,z (3.16.0)
Since Eqgs. (3.12) and (3.15) have the similar appearing expressions, the following gen-
eral forms can be used for a reduced two-dimensional problem:
‘. ’ ..
p(xy,2) = T plx, .2} = T cplx e lz) {3.17.0)
p p}
hv:@&a&;%“g@m«e:wu{m%m ;2 b A e KT AR T o A B T T e T T T T T T b
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Viﬁ(«'-?) - Mﬁ:(x')’) = ’ (317.b)

where ¥,{(z) is the mode shape of the wave, 7, (x,y} is thé associated amplitude which can be
solveﬁ from two-dimensional Helmholtz equations (3.17.a), ¢; is the constant which ¢an be
combined within 7,{x,»), and Py = 0 is for high frequency excitation.

The shapes of wave for the first six modes in both cases are shown in Fig. 3.3 where the
mode shapes in Eg. (3.12) are the functions of vibration frequency and those in Eq. (3.15) are
independent of frequency. The first mode has a shape of Yi(z) = cosh ko_z which is obtained
because of the surface wave effect in water depth of the order of the wave length. It is noted
that the hydrodynamic pressures due to low frequency excitation are significant only near the
water surface and decrease rapidly with the depth. On the other hand, the hydredynamic pres-
sures due to high frequency excitation will be zero on the water surface and increase with the
depth.

In terms of the deprees of freedom of structure responses, the amplitude of hydro-
dynamic pressure p(x,y,z) in three-dimensional problem as shown in Eq. (3.5), or 5(x.y) in
two-dimensional probiem as shown in Eqs. (3.12) and (3.15), can be solved by applying the
va:ial.ioh principle and the fnite element method which witl be diccussed in the next chapter.
The total hydrodynamic forces on structure will be the integration of p{x.,y.z} all over the

interface on the cylinders.

In the case of rigid cylinders with two degrees of freedom, the hydrodynamic force will

= _fésﬂ)rﬁ(x- ,2) R dsdz =12 (3.18)
T %Y,

where ¢,/ is the transformation matrix from horizontal degrees of freedom to structural

degrees of freedom, i.e.
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U(7) = Ulwdexpi—iwr) ' (2.20.a) .
U =~ —iw Ulwexpl—iwr) (3.20.b)
; B = —wll{w)exp(—iwr) . (3.20.0)
: and the total accejeration is
3
-
i U'w) = Ulw)+riig(w) (3.20.0)
|
i
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with z./ being the coordinate of center of gravity of the j-th cytinder, ¥ is an unit vector in the

direction of ground motion, and F(x,y,z) is normal to the interface on the cylinder.

In the case of flexible cylinders on rigid base, the generalized hydrodynamic force is

FJ -f &, P(x,y,2) 7 dsdz {3.19)
1] /]

where ¢,/ is the n-th mode shape of cylinder vibration, and p(x,y,z) can be obtsined from

either three-dimensional or two-dimensional considerations.

It should be pointed out here that the amplitude of hydrodynamic pressure becomes fre-
quency independent in high frequency vibration. The associated added mass will be frequency

independent also.

C.  Structural Responses - Rigid Cylinders

As we stated before, when the excitation to a linear system is in simple harmonic
motion, then the steady state response is also in simple harmonic motion at the same fre-
quency. The amplitude and the phase of structural vibration can be described by the complex

frequency tesponse functions:

[ - E i D Xr: A —— ...
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The interface acceleration can be expressed as

LICIS a2

where ¢, is the transfer matrix for rigid cylinders. Two degrees ol freedom, translation and

rotation for each cylinder are assumed to apﬁroximate the flexibility of the cylinder.

From Eq. (3.1), the equation of motion of the j-th cylinder can be expressed in fre-

quency domain as
MPHCIURKIY = —Mibi—F =12 (3.22)

The hydrodynamic forces in Eq. (3.18} can be expressed in terms of the structural degrees of

freedom for both cylinders. That is

.
i [§f‘§”]l_‘-gz.l j=1,2 (3.23)

In this expression, the hydrodynamic forces are complex frequency dependent functions. The
energy is transmitted from the structure into far field during vibration. Furthermore, the fol

fowing relation can be made:

EV=m EVpr1 EY  1,/=12 O (3.28)

where £ and EY; are th= real and imaginaty parts of EY respectively.

Combining all the equations of motion for both cylinders and applying the relation

{3.24), one obuains

M +M) T + (C+CNY + KU = — (M +M,) rii, (3.25)

where M, C", K" are the known physical properties of the structure as shown in Eqs. (3.2.b-




o

@), M* is the added mass matrix of structure,

_ B, EHR\ ' _
Mr=t 3.26)
— LEHR g!!n ) (

Coisthe hydrodynamic damping matrix,

Eil' En 1
C* =l - . : 3.2D
= W[ gl I .‘.'é'n:
and M, is the complex added mass matrix associated with ground acceleration,
g gV '
M= gl ' (3.28)

The clements of M?,C* are real matrices while those of M, are complex. Each E¥isa2x2
submatrix which represents the hydrodynamic effect on the i-th cylinder subjected to the

motion of the j-th cylinder.

In the frequency domain, the acceleration and the velocity can be referred to the dis-
placement as shown in Eqgs. (3.20.2-d} and the complex f requency response unction will be in

the following form:

U= [—«!(g'+_»_f')—fm(g‘+g')+g']"[-(ﬂ'+g,) A 329

Comparing with other terms, the damping matrices £ * and C° are very small, It is
herefore reasonatie to calculate the submerged natural frequencies and shape functions by

neglecuing the damping mairices and solving the following eigenvalue problem:

K'¢ =M + Me" (3.30)

[



e ——————— ek

24

where ¢° is the submerged mode shape and @ is the submerged natural frequency of struce
tures. A reduction of natural frequencies due to the presence of the surrounding water can be

calculated.

'D.  Structural Responses - Flexible Cylinders

~ The solution shown above is based on the assumption of rigid cylinders with two degrees
of freedom each. If flexible cylinders are considered, Eq. (3.19) will be modified by the gen-

eralized coordinates of structure;

B oy Sy v | (3.31)
3‘2 “‘ £¢l ) -

where Y. is the amplitude of the peneralized coordinates of the k-th mode of structure, ¢, is

the shape function of structure in the air, and n, is the number of structural vibration modes.

‘The cylir_xder can be treated as a beam type structure whose mode shapes of vibration, in
the absence of water, are assumed to be known by applying a convemtional finite element

structural analysis. In the k-th mode, the shape function will be

Gx = ,2)

"and the vibration will be in the same direction as the ground motion.

The following discussion is based on the reduced two-dimensional problem where ¢,(z)
represe:.us'thc' mode shape of wave in Z-direction. In the three-dimensional case, the formula-
tion can be derived easlly by removing the ¢ ,{z2) from the following equations. The summa-
tion of each individual wave mode of hydrodynamic pressure is also unnecessary. However,

an increase on the effort of caleulation in the three-dimensional formaulation is expected.

The equation of motion in the o-th mode in the generalized coordinate becomss

MY, + C.Y,+ K.Y= —A,ii, - F, (3.32) .




with

and

M= fm{z}d-‘.zd: .
u .

A = fm(z)¢*',dz
1]

K/ =w,M,/

(3.33.2)

(3.33.0)

(1.33.0)

(3.33.40)

{3.33.¢)

(3.33.0

(3.34.a)

(3.34.0)

(3340
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[ =4

C.l = 2§ o M,/ (3.34.0)

where m(:) is the mass per unit length of cylinder, j refers to the j-th cylinder, w is the
patural frequency for the n-th mode, H is the height of cylinder and £, is the damping

coefficient.

For every i-th mode of wave, the hydrodynamic {orce per unit length on each cylinder

<an be computed as

P = [ Flxy, ) 7 ds (3.35)

where Fix,y,2) is the hydrodynamic pressure normal to the interface of the j-th cylinder and

# is the direction of ground acceleration.

Recall from Eq. (3.1?.a).

.
plx,y.2) = ¥ ep x o0 (2) (3.17.3)
pord :

and from the numerical analysis which will be discussed in the next chapter, we will obtain Eq.

(4.26).
» 32 "
"@t(X‘J") - fpoﬁ; + 22‘_"&1 Yx’ (4.26)
_ kmlj=1

Substituting Eqs. (3.17) and (4.26) into Eq. (3.35), the total horizontal hydrodynamic force on

the cylinder can be derived by numerical integration.

The generalized hydrodynamic force in the n-th mode of ¢ylinder vibration will be

Fl= ft#,,"(:)p’(z) d= ) 3.37)
0

WAl - m s s
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where j refers to =ach cylinder, and & is the depth of water. In this expression, two different
medal functions are involved, namely the mode shape of structure and the mode shape of

wave.

Substituting Eq. (3.37) into Eq. (3.33.¢), we have

"- .
Fom Egil, + T En Y, (3.38)
) o]

where ¥, is & vector conteining ¥, and ¥,2,

E 1
.o] {3.39.2)

gﬂﬂ- [E,oz

is the hydrodynamic effect on the n-th mode of the generalized coordinate due to ground

acceleration, and

E il E 12
o "*] : (3.39.5)

L= IEnkZI EMH

is the hydrodynamié effect on ihe n-ih mode of the generaiized coordinaie due to the struc-

tural vibration in (he k-th mode. The supcrscribls 12 and 21 refer to the coupling between the

cylinders. Therefore, the following two equations are derived:

a, 2 -
Eg/ =Y | & {2 (2} dszm(x.y}cosoa’do (3.39.¢)
iy )
and
. Ay | 2 _ o .
E Y m qu‘.o 2w (D) dsz,-H(x,y)cosaafa‘e {3.39.4)
=00 0
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where a’ is the radius of the j-th eylinder, Pq and P,/ are the amplitude of hydrodynamic
pressure on the interface only. . |

Due .to the coupling lerms in the above exﬁressions of hydrodynamic forces, the general-
ized equation of motion (3.32) is no longer uncoupled. Rewriting the complex frequency

dependent function E; as

Eu= Eg pt+ify s (3.40)

apd considering the first #, modes of structural vibration, the following eéquations can be

obtained by modifying Eqs. (3.24),(3.37) and rearranging Eq. (3.32).

(Mo +Mo®) T+ S Cn®) Vo 4K Y = = (40 "+ M) iy (.41
where
Mo .0
0 M. 0
M) = (3.42.2)
L Y.
& o .0
0 &;- 0
Cu ™ (3.42.0)
(U
K0 .0
9 K. 0
K=t o - (3.42.)

jo
o .
I

k]
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Ay
4:
A =1 (3.42.4)
As,

and M,, C,. X,. :1¢ the uncoupled matrices (n € n,) which represent the assembled struc-

tural characieristics in the generalized coordinaies as shown in Eqs. (3.33.a-d).

Also,

Epa Enr - Eigr

M- £na “ng" Co  (3.43)

.

- ' .
7PN S

is the generalized added mass matrix which is coupled between the modes 2s well as between

the 1wo cylinders.

Ens Enag - Eia s

Eng Eny . .
Cotme —2_“ Eny G44)

.gn,i.f - - .gl,l,.f,

is the generalized hvdrodynamic damping matrix where w is the frequency of ground accelera-
tion. As expressed in Eq. (3.39), E, p and £, ; are the 2 x 2 submatrices which indicate the

coupling between two cylinders.

Mu' - (3.45)

is the compiex generalized added mass term associated with ground acceleration.

Mt e s o n 44 n e A e ARt AT C— e ot e
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Yr=1 1 _  (3.46)

‘is a combination of the structural displacement in generalized coordinate which is shown in Eg.

.33.9).

As discugsed in the previous section, it is i‘easonablc to neglect the damping terms which
include both structural damping and hydrodynamic damping matrices so that Eq.(3.41) can be

decoupled by solving the following eigenvalue problem,
K.'0 =3, (M, + M0 (3.47)

where © is the eigenvector with 2n, elements and @, is the submerged natural frequency in

generalized coordinate.

Therefore, we know that

Umodn .In " - [ 79 ..n_z (3.48)

is the structural response where

¢ll 0 --¢ul 0

» ¥

bn = 0 ¢12 .0 ¢”’2 {3.49.a)

and

¢ =d. 0 (3.49.b)

is the subinerged mode shape of structural vibration. The structural response U can be com-

puted by decoupling the generalized Eq. {3.41) with



R TR T g LT S R e WO i e T T 1T S S e et

(3.50)

l;:
1
R

and solving the following equation

QM +M DR Z+QT(Ca +Ca N Z+ATK, 'R Z = =0T (4 "+ M D iiy (3.51)

Substituting Z from Eg. (3.51) into Eq. (3.48), the final response I/ can be determined.

If the cylinders are considered to be muiti-degree-of-freedom systcms, the conventional

finite element analysis can be applied. Eq. (3.34) shoﬁid be modified as
M/ =3, M's,/
KJmw, M) " (3.52)
Gy = 2 ' M)/

A - énﬂiﬂ_’

~ where M/ is the mass matrix for the MDOF system of the j-th cylinder.
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(1) Rigid Cylinder on Rigid Foundalion

KLY 74
(2) Rigid Cylinder Connected Flexibly to
Rigid Foundation
\_.
(3) Flexible Cylinder on Rigid Foundation
IRV

{4) Flexible Cylinder on Flexible Foundation

Figure 3.1 Models of Fixed Cylinder in Fluid
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Structures in Fluid

Figure 3.2



3

AN A" NN A
VAR

IAVARVERV/

AN A AN ANVL
T\ \/\7

A A A"

N
N Ny
~N__" |

\/\/

Low Frequency Excital

.\,o/'“

/\ /172
NS

- i b
| ~—_

b. High Frequency Eacitalion

Figure 3.3 Mode Shape of Wave



e e e e e R TR A T T P TR Y, TR b T e v e e

o e g T T O i T A T G L e O T

35

IV, NUMERICAL ANALYSIS

In order to find the hydrodynamic pressure exeried on the interface of the structure, a =
variation principle and finite element method are applied_ to the boundary value problem [26].
The Laplace's equation (3.5) in the three-dimensional formutation and the Heimholtz equa-
tions (3.17.a),(3.17.b) in the reduced two-dimensional formulation, are considered with the
associated boundary conditions. A localized finite element method [27] is also employed to
reduce the fluid domain by utlizing the known analytic sotutions in certain subdomains. The
cases of symmetrical loading and antisymmetrical loading will be discussed later to further sim-

plify the problem.

A, Finite Elemehl Anaglysis In Three Dimensions

For a general three-dimensional problem (3.5), the fluid domain is divided into a finite
number of elements as shown in Fig. 4.1, An interpolation function associated with each node

is assumed such that sach individval element can be represented by

plx.y,2) = T Np* = Np* 1)
F )]

where p* is a vector of the nodal values of hydrodynamic pressure in one element with n
nodes.

In the standard_ Galerkin method, the weighting function w is chosen so that the

weighted average error over the domain is forced to be zero. That is

Z_U.fw'v 2p(x,y,2)dV = 0 4.2)
[ ¥

and

wilx,y,z) = zn,NfPf' = Np*© (4.3
]

e e e T T



where the interpolation functions for the weighiing function, w, are the same as those used for
the hydrodynamic pressure.
After integrating by parts and applying the Green's Theorem, the weak form of Eq. (4.2)

is obtained as follows:

}:J' I j' ~UNTY avp = -zf { _rg'—gﬁds - (4.4)

where p is a vector of nodal hydrodynamic pressure in the fluid domain.

The boundary of the fluid can be divided as shown in Fig. 4.1,

S=ShlUSnlU S U SUS (4.5)

where 51,5 are the interface boundaries for each cylinder, Sy is the far field boundary, S, is

the boundary of the bottom of the fluid domain, and 5, is the free surface boundary.

With the boundary conditions, Eqs. (3.6.a-d), the right haud side of Eq. (4.4) becomes

):'J'f v?-gﬁds szNf-“'—pa:S + szﬂ"(-— <t ik} pdS

+ 2 sz NT(-p *——cose)cosﬁ ds 4.6;
f=l ¢ Sg

For rigid cylinder with two degrigs of freedom, we have

H -
8 .0 (.21

Kp=» “4.n
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_’ where p is the unknown nodal hydrodyﬁamic pressure,
K- UII-VN’VNdV + zfj' NTNGS + Ef_rN’N(—-—-ﬂk)dS 4.8)
and
p=-23%f _]'N Jeosteosgas (4.9.2)
ot =l
I or
R
3 k=2 BIUY (4.9.0)
. : - . J-I .
|
and B/ is a n x 2 matrix with n being the total nodal number. For those nodes which are not
on the interfaces of cylinders, the values of the associated elements in B/ are zero.
. In order to solve Eq. (4.7), the hydrodynamic pressure can be decomposed as
R r SR
P 2= o 4.10)
. ' s~
; where P/ is the amplitude of hydrodynamic pressure with respect to the unig acoeléralion of
T the j-th cylinder.
e . Comparing Eq. {4.7) with Eq. (4.10), one can determine the amplitude of nodal hydro-
o ; dynamic pressure by solving the following equations:
R f o
kplwp -2 @11
i _ Substiteting P/ into Eq. (4.10), the hydrodynamic force applied to each cylinder can be
found by picking up the nodal value on the interface of the cylinders and performing

o T -
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numerical integration over the interface as discussed in Eq. €3.18). This procedure will lead to

the expression in Eq. (3.23) and the solution of structure responses can be found accordingly.

In case of ﬂex_ib_lc cyi'nders on rigid foundation, the modification can be made by intro-

ducing the generalized coordinates

Bu._ ., 5
Y =i+ Y2} Y
t ) .

and recalling that ¢ is the k-1h mode shape of cylinder in air.

Substituting Eq. (3.31) into Eq. (4.6), we get

Kp=2

where K is the same term as shown in Eq. (4.8),

' m 3
b= Boiig+ 3, T B Y,
=ty

with

7 -
By= 33 ' J'pﬁfcosecosﬂds
=l e Sy

B/ - ﬂ_!p NTé JcosbcosBdS
I 5 - .

(3.31)

{4.12)

4.13)

- {4.14.2)

(4.140)

In the above expressions, f refer to the cylinder, & refer to the modes of vibration, and

8 = §—5 is shown in Fig. 3.2.

Decomposing the hydrodynamic pressure in terms of modal amplitude and ground

acceleration, we obtain
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. N .
B=Pby+ f. TRV {4.15)
k] ol

Substituting this expression into Eq. (4.12), the amplitude of hydrodynamic pressure can

be solved. Thus,
X Po-' Bo (4.16.!)
and

KPJBt (4.16.0) -

where & and j are the same as- those in Eq. {4.15).

B. Two-Dimensional Approximation

For a reduced two-dimensional problem, i.e. the cross sections of cylinders are uniform,
then the boundary conditions on the free surface and on the bottom are no! involved in the
boundary integral in the finite element formulation, The weak form of the integral of the

Helmholtz equation (3.17.b) will be

Sf [N IN- AN M ap, = -3 [ gf%-’;-:-(x,ym 4.1
e A « S

where A; = —kXfor =0, A, = k2 for i 2 1, k, can be solved from the dispersion relation in
Eq. (3.13) for low {requency excilation or from Eq. (3.16) for high frequency excitation,
Pi(x.y} is the two-dimensional hydrodynamic pressure on the interface for the i-th mode of

the wave, and 3; is a vector of nodal hydrodynamic pressures in the i-th mode.

The boundary in the two-dimensional domain becomes
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with S on the interface and S, on the far field. Therefore, the boundary integral in Eq.
(4.17) will be

EJ'N"ap‘dS‘ 22_['Nfa"' as + ﬂNTa‘" 4.19)

M=l
Applying the sppropriate boundary conditions 2nd rearranging eras, the following equa-
tion is obtained,

Kip=d (4.20)

where

- I‘J' f (-UNTIN-ANTN) dA + szTN{— —tikg dS @2n

The interface boundary condition will be applied by substituting Eg. (3.12} into Eq.
(3.6.d), such that the hydrodynamic pressure can be expressed in terms of structureé responses

as

< aﬁl azu -
Eq‘ an (-"-}')'Jn(z) —p""'"“atz (z)coso (4_22)
again, w,(2) is the i-th mode shape of the wave.

Since ¥'s are orthogonal functions, the Fourier series expansion <an be applied in order

to find the modal coeflicients:

a7 4k, Jﬂ -
“3n (x,y) = wsin2k;h+2k;h Br‘ (z)cosfy () ds {4.23)

e i Sty

- Ay~ P
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For the rigid cylinder with two degrees of freedom each, we have

By i | @.21)

while for ihe flexible cylinder with rigid base, we have

8 _ il ¥ @31
b AR E . :

However, only the second case will be considerad here since the formulations for the ﬁrs_t one

are straightforward.

Introducing the generalized coordinates in terms of Eq. {3.31) to Eq. (4.23) for each

cylinder in each i-th mode of wave, we have

) n h . '
c;%(x.y) - —-chosﬁ(-flh(z) dziiy + El_];m,j,f(z) dz¥,) (4.24)

'Applyins the same procedure of decomposition as discussed in the three-dimensional case, the

following expression can be derived from Eqs. (4.19) and {4.20).

a2 . - ’
Kiep, = Boil, + 3, 3 B’V (4.25)

dem1 ot

where

Bo= —e-ft# (D3 f N7cosddS

«spl) sn

By = -ﬂ-fmw, ~)¢2J'N cos8 dS

fS_,J.

o i e i e e+ Rt T A A SPTY, L i e e e - e i i e ot
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Dec_:omposins the hydrodynamic pressure in terms of modal amplitude and ground

acceleration, we got

W] -
cBlx,y) = Poii, + T3PV (4.26)

i) fe=i

The amplitude of hydrodynamic pressure for each mode of wave can be found by solving

the following equations

Kixy)Po=Bo 4.27.0)

and

K(x,p)Py! = B,/ {4.27.0)

where & is the mode of structural vibration, j refers to the j-th cylinder and / is the mode of

wave,

Substituting the results of Eqs. (4.27.a-b} inte Eqs. (4.26) and (3.12), we can compute

the amplitude of Lhree-dimensional hydrodynamic pressures.

C. Localized Finite Element Method

In order to reduce the fluid domain, the following procedures are suggested: 1} introduc-
ing a transmitting boundary 10 separate the fluid into the inner and outer domains, 2} connect-
ing the inner and outef domains by the continuity conditions on the transmitting boundary, 3)
using a finite cumber of orthogonal functions, which are derived from the analytic solution of
diffraction problem, to represent the hydrodynamic pressures in the outer domain, 4) applying
the finite element technique only to the inner domain with appropriate boundary conditions.
Once these procedures are made, the rest of the numerical analyses can be performed without

difficulty.
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For simplicity, we will only consider the two-dimensional groblem in Eqs. (3.17.2) and

{3.17.6) waere the fluid domain is governed by a series of Helmholtz equations.

1. loner and Quter Domains

As shown in Fig. 4.2, a transmitting boundary S, was located near the structure in order
to separate the infinite fluid domain into inner dornain R, and outer domain R; Let pyand py
denote the hydrodynamic pressuse in R; and R; respectively, then we have the following two-
dimensional problems where the boundary conditions on the water surface and at the boitom

areé reduced.

In the inner domain, we have S = Sy | ) S \J S, and

ViHidxy) — AP lxy) =0 (3.13.2)

with the boundary condition on the interface of cylinders .being

8 9 - .
P (x,y,1) = —p Y (z)cosd : (3.6.4)
Recalling that
o .
Pl(x'yu'-) - ZEli(xvy)wf{Z) (3.12)
_ fuy
we oblain
351, .
an (x,5) = f; | (4.29)
where

= —zﬂ-cosaf iz, (o) d=
C,ﬁ [}
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In the outer domain, we have § = Se U Sy

and

Vzﬁ;,(x,y)—k Pulxy) =0 : (4.30)

with the far field boundary condition for low frequency excitation as

}ix_rl_R“(aﬁt(R)4 ikg p;(R}) = 0 4.31)

ar

On the transmitting boundarj', we require that

Fli = Pa {4.32.a2)
and
71, apy
an - Y 4.32.b)

where the normal vector is taken outwards from the fluid domain which is being considered.

With these boundary conditions, 7, and p;, can have unique solutions.

2. The Fupcticaz! in Inner Domain
Using the principie of variation, the fcllowing functional in the inner domain is formu-

lated for each mode of wave:

F=15y

2 o
Foubad = [ (R piD ety ~ Tf usias
]

+_[ (P1~P2)F2mdS - (4.33)
]

e 3p1; ap
where pj,, and 7;;, denote : ; and -—é—?— respectively.
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Applying Green's Theorem 1o 73, and 87y, in the outer domain, we have the fullowing

variation:

L - _ _ 2 _
8F = —f _[ (VP1~A D1 }8Pdxdy + 3 f (P1ii=S)8P1,dS
. ] J-IS,J

+ _! (D1t Pru)5P1,dS + ! (F1~P2087,,d5 (4.34)
(] [ ]

where 5Py, 872, are the variations for 5,, and Ps,.

Since the Eqgs. (4.28), (4.29), and (4.32) are obtai.ned by Ietliris 5F = 0, the values of 5|,

 derived from the functional, Eq. (4.33), will be the solution of the problem.

3. Boundary Value Problem

Let the inner domain R; be divided into fiute element mesh with nodal points in each
element. Introducing the interpolation function associated with each node such that each ele-

ment can be represented by
- L — !
Pulxy) = TN = NBy, (4.35)
=l

According to Wehausen and Laitone {13], the radiated hydrodynamic pressure in the far

field can be expressed in terms of the eigenfunctions ¥,(x,y) with unknown coeficients 5;,.

From three-dimensional hydrodynamic pressure

",
Px.y.2} = 3 B, (x, ) () (4.36)
pr

snd for each i-th mode of wave,

.l!-l
Prlx.y) = I ¥ [(x.9)5;' = ¥. 5y (4.37)
-0 .
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when /= 0 we have

Vo (x,y) = H/(koR)cos(16—8) (4.38.2)

when / 2 1 we have

¥ (x,7} = Kk R)cos(19—38} (4.38.b)

where H!is the Hankel furction of the first kind to the I-th order, K, is the modified Bessel
function of the second kind to the I-th order, and () is the mode shape of wave, Egs.
(.13} and (3.16), |

The stalionai_v point of the functional, Eq.. (4.33). with respect to By, and Fy; can be
found by the [ olloﬁing equations: | |

. AF (P P21) -
82y

0 {4.39.2)

8F (%520 N

— 0  (4.39.0)
a2y

where By, is a vector of nodal hydiodynamic pressures in R, and p,, is a vector of coefficients

in Eq. (4.37).

The following set of algebraic equations is then formulated for cach mode of wave:
Ay 41:] Z1: [Qu} “ 40)'
An An|, |72 T (22 : :

where
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An=Tf[ONIN AN | @4la)
e R,
An= 2.!% FaTe,+¥,7V,)ds ' {4.41.b)
£ 3
A= -Z!ﬂ T ,dS (4.41.c)
r Y .
An= A7 . (4.41.d)
. . 2 ) .-
b= ):Z{A"I,’ds 4.41.0)
=1 e m
by, =0 ) (4.41.0)

- v
atso the cylindrical coordinates are applied to R and ¥, denotes _é_rf-

Recall the expansion of the interface boundary condition (4.22) for both cylinders tie

matrix &;; can be represented as follows by the same procedure discussed before,

A 2 . .
by = Boiiy+ 3, 2. BT (4.42)
k=1j=1

where cylinders are considered to be flexible, & refers to the k-th mode of structural vibration

and f refers to the 'j-lh cylinder.

The aigebraic equation (4.40) can be simplified as
k=1 jul

* 2 ..
AP~ Boiig + 3,3 B’ Y (4.43)

Decomposing the hydrodynamic pressure in terms of i, and i’, :

2 .
Bi=Poi, + 3. Y PYY : {4.44)
. k=1 =1



L8

the amplitude of hydrodynamic pressure for each mode of wave will be solved from the fol-

lowing equations,

APo= By (4.45.2)

— -

APy = B,/ (4.45.0)

Thus the three-dimensional hydrodynamic pressure can be found by Eq. (3.12).

It should be noted that if the transmitting boundary is taken at a far distance from the

structure, then B, can be represented only by the firsi few terms of the series in Eq. (4.37).

'For the case of high l‘réquency excitation, the far field boundary condition is reduced to

o _ .
Fp {x,y) =0 (3.14.b)

Therefore, the eigenfunction expansions in the outer domain [34] can be represented by

Wy (x,p) = e Ycos(io—5) (4.46)

_and the method discussed above is modified in Appendix B. However, the amplitude of pres-
sure wave due to high frequency excitation decreases rapidly with the traﬁeiins distance, We
can solve numerically the radiation problem by choosing a proper boundary at far field and

applying finite element technoque io the inner domain only [26].

D. Symmetrical Loading aud Antisymmetrical Loading

The discussions in the previous sections are for the general consideration that the ground
motion can be in any direction. The steady state structura: responses are assumed iﬁ the same
direction as the ground motion. By using the appropriate {:ﬁnditions of symmetry and antisym-
metry, the fluid domain is reduced to one half so that the corh‘putation of hydrodynamic pres-

sure is simplified and becomes much more efficient.
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}7 the siructures are symmetrical with respect to the X-axis as shown in Fig. 4.3, an arbi-

trary ground motion can be decomposed into X-component and Y-component,

-r - +"
by =2 Upy T Up,

Thercfore, the hydrodynamic pressure consists of two parts - the one induced by iy, is sym-

metrical to the X-axis and the one induced by iy, is antisymmetrical to the X-axis:

Rl

The total responses of structures can be obtained by combining of the soiutions from

those two reduced problems as follows:

For the symmetrical responses, the dirsction of ground motion becomes 5 = 0 and § = 8,
The boundary for the integral domain in fnite element formulation‘reduces to the following

form as shown in Fig. 4.3

S=S5,UShlUsS~U S - (44D

where S, is .he symmetrical boundary on X-axis, S} is the interface boﬁnda:y. and 5S¢ is the

far field boundary.

On the symmetrical boundary, S,, we have the following condition:

35 o
Y 0 (4.48)

Thus the houndary integrals, Eqs. (4.€; and {4.19), vanish and *+2 computation is greatly

simplified.
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As for the antisymmetrica) responses, the direction of ground motion becomes 8 = %
and 9 = 9----1'2L The hydrodynamic pressure ia the positive Y-direction will be opposite to that

in the negative Y-ditection. The boundary for this case is (Fig. 4.3)

S= S5 Sn U Sn\J S, . (4.49)

where S, is the antisymmetricai boundary.

associated with the boundary condition,

Pa=0 _ {4.50)
the boundary integral on S, becomes
P aN . - :
Tt - o
{N n (x,y)ds {'N 3 as B (4.51)

which will be added to the the right hand side of Eq. (4.8).

It is worth mentioning that, for the antisymmetrical problem, the structural responses in
the direction perpendicular to the ground motion becomes significant if one considers the

second-order terms in the fluid flow.

I we decompose the structural response such as

= 14,008 0 + uysin @ (4.52)

and consider the degrees of {reedom for both X- and Y-directions, an added mass matrix will

be constructed as Follows:

(4.53)

[M,, My

My My
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where M, is the coupled added mass matrix in the X-direction due to the unit structural

acceleration on the degree of freedom in the Y-direc:iori for both cylinders.

However, the coupled added mass matrices Ay, and Af,; will vanish in a linear fluid for- .
mulation and the antisymmetricai problem is uncoupled into two parts. Since the component
of ground motion is in the Y-direction, we need to solve this problem for the Y-direction only.

The assumption that the structural responses have the same direction as the ground motion is

assured.




52

"

et

Figure 4.1

Three-Dimensional Fluid Domain

e e ey




-~

53

Sy
L J
[ ]
| ]
[ ]
[ ]

a. Conventional Finite Element Discretization

h)
\:‘:’-’/
‘.transmiuing boundary
i

"b. Localized Finite Elernent Discretization

Figure 4.2 Reduced Two-Dimensional Fiuid Domain in Localized Finite Element Method




54

Y §
% i A
'
symmetrical axis Sn /

a. Ground Motion in X-Direction : Symmetry

7

antisymmsirical axis

+P

X _
-

NG R
P

b. Ground Motion in Y-Direction : Antisymmetry

Figure 4.3 Symmetrical and Antisymmetrical Fluid Domain
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V. EXAMPLES AND RESULTS

The method discussed in the previous chapters was programmed for a high speed com-
puter. Here, we will illustrate three examples for numerical calculations. In Example A, the
structural system is assumed to be the same as that in the experiments {51] which were per-
formed in the Earthquake Engineering Research Center in UniQersity of California at Berkeley.
Then, the comparison of results from numerical analyses and experiments is made. In Exam-
ple B, the results of finite element analysis'for a single flexible cylinder is used to compare
with those from theoretical analysis {26). Example C is an extension of Example B, with the

assumption of two flexible cylinders.

A Rlgid Cylinders of Type (2)*

We assume that there are two identical rigid circular cylinders connected o a rigid foun-
dation as shown in Fig. 3.1 and Fig. 5.1, where each cylinder has two degrees of freedom,
namely transiation and rotation. if the harmonic ground acceleration is either from X-
direction or from Y-direction, then the principle of symmetry and antisymmetry can be applied

1o reduce the fluid domain to one half. For ground acceleration with high frequerlzcies. ie &

D

7 is large as shown in Fig. 2.1

-

It implies that the validity of diffraction theory is assured. Furthermore, a simpiilication of the

far field boundary can be made by assuming

829 5.0
an .

i.e. the radiation effect due to the surface wave propagation is neglected for high frequency

vibration.

* refers 10 the definition in Chapter HI.
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The number of wave modes is chosen to be six by taking the first six terms from the
series shown in Eq. (3.15). Fig. 3.3.b exhikits the variation of hydrodynamic forces in the
vertical direction with respect to each of the six modes. l‘-“fg. 5.2 shows how the am.plitude of
bydrodynamic forces decreases as the number of modes increases in the cases o high fre-
quency (8 .Hz ) excitation. It also shows that the hydrodynamic forces on each cyliader due to

the vibration on the neighboring one can be as high as 40 percent of those due to tae vibration

. of the translational degree of freedom on itself. Since the forces decrease very fast for higher

modes, they are negligible when the mode number is greater thagn six.

By the assumption of the uniform cross section in the vertical direction, the boundary

value problem in the fluid domain can be reduced 1o two-dimensional problem as discussed in _

Chapter HI. A finite element system of 129 nodes which cotrespond to 29 Lagrange quadratic
clements is formed to investigate the hydrodynamic effect around the cylinders as shown in
Fig. 5.3. Also, the variation of the relative structural responses with respect to thg size of
finite element mesh is examined. From Fig. S..4. it implies that the change of structural dis-

placement is less than 5 percent as the ratio of the radius of the far field boundary to the

radius of cylinder is greater than 7. In order to insure the convergence of the results in this

example, the ratio of ~£— is chosen 1o be 10 wnich is twice as much as the effective diffraction
distance of a singie ¢ylinder under high frequency vibration {26).

The natural l‘re_qucncy of each cylinder in the air is 26 Hz for the first vibration mode.
Figure 5.1 displayes the mass matrix 2nd the stiffness matrix of the cylinders. Rayleigh damp-
ing of structure has been assumed with a damping ratio being 5 percent. The .Lranslation angd
rotation of structural displacements are shown in Fig. 5.5 and Fig. 5.6 respctively. With the
definition of relative distance as the ratio of the distance between the centers of cylinders to
the sum of the radius of cylinders, it is clear that the hydrodynamic interaction becomes
important as rcIat}ve distance is less than 4. Also, the extent of interaction depends on the

frequency of excitation, the amplitude of ground motion, the characteristics of structures and

the depth of water.

L
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Fig. 5.7 shows the variation of base shear of the cylinders. When the cylinders get
closer, the struc!ufal reactions and deformations will decrease if the ground acceleration is in
the X-direction and increase if the ground motion is in the Y-direction. The variation in high
frcque}:cy excitation can be in the range from a 20 percent decrease for the symmetri_cai case

to a 60 percent increase for the antisymmetrical case,

In Fig. 5.7, it also presents the resuits from the experiments [S1] to compare with the
numerical analyses. As clearly shown, these two results are quite close to each other except
some minor discr_cpancies. These discrepancies may be caused by the following reasons: {1)
the linearization of the boundary value problem in numerical analysis, (2} the square basin
being constructed to simulaie the unbounded fluid domain, and (3} the uncertainties in labora-
tory works. The experimental equipments, techniques and results are discussed in great detail

in a report by Ansari [51].

The imeraction for the added mass in this example changes in the same pattern as that
for structural responses. Fig. 5.8 and Fig. 5.9 present the normalized added mass for the case
of symmetry and antisymmetry respectively. The added mass of the degrees of freedom
between the two cylinders is negligiblc for refative distance greater than about 4. The interac-
tion of added masses for degrees of freedom of the same cylinder can be as high as 30 percent

when the cylinders contact each other for both cases of symmetry and antisymmetry.

B.  Single Flexible Cylinder of Type (3)

This problem was solved analytically by Liaw and Chopra 126] with the principle of
axicymmetry. A reduced two-dmensional numerical procedure discussed in the previous

chapters is now applied to the same problem for comparison.

At first, the fluid domain is investigated by a finite element mesh with 63 nodes and 12

qQuadratical elements as shown in Fig. 5.10. Secondly, let the ratio of outside radius 1o the '

height of a slender crlinder, -% be 0.05, and the ratio of wall thickness to the outside radius,

i be 0.2 which is a typical value for many towers. Next, assign a value of 5 miltion psi to

[
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Young's modulus E, a value of 155 pcf to the unit weight of concrete and a value of 0.05 10
the _modal damping ratio. The frequencies and rﬁode shapes of vibration can then be obteined

by the assumption of uniform cantilever beams governed by elementary beam theory.

The detail of the analytical solution is presented in Appendix C. We are considering the
case when the cylinder is with no surrounding water or is fuily submerged for the dynamic
responses of the first two modes. As shown in Fig. 5.11, by using six modes of wave, the
numerical solution of structural acceleration gives a very good approximation to the analylic

solution.

- The effect of surrounding water on the dynamics of towers in the first mode of vibraiion

is given by

m i) = 2 (5.2)

¢;(:}

where m,(2) is defined as an additional mass per unit height of the cylinder, py{z) is the
hydrodynamic forces which can be derived either from the analytic solution by Eq. (C.22), ot
from the numerical procedures in Eqgs. (3.17.2), (3.35) and (4.26) for the first vibration mode
where i, is the unit ground acceleration, and &; (2) is the shape function of the first mode
vibration of the cyiinder.’

The "added excitation” due to the hydrodynamic effect wi.lh respect to the ground motion

can be represented as

m, (2} = py(z) 5.3

where pp can also be derived either from the analyiic solution, Eq. (C.22), or from the numer-

ical solution.

The comparison of added mass distribution between 2nalytic solution and numerice! solu-

tion is shown in Fig. 5.12. It proves that the numerical solution, by using six modes of wave,
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is & very good approximation to the analytic solution.

C.  Flexible Cylinders of Type (3)

This example will investigate two identical flexible cylinders of type {3} under high fre-
quency horizontal ground excitation. For each cylinder, it has the same strocteral characteris-
tics as shown in exampie B. The reduced twn-dimensional numerical apalysis i still applied to

the symmetrical and antisymmetrical cases as the previous examples.

The fluid domain is divided into finite element mesh which is the same as the mesh out-
lined in example A. However, the hydrodynamic presure and the structural responses are cal-
culated herein by using the first six modes of wave and Lhe first two mode of structural vibra-

tion. While the convergence of hydrodynamic forces with respect to the modes of wave has

‘been examined in example A, the convergence of structural responses with respect to the

modes of structural vibration is exhibited in Fig. 5.13. Since the cylinders in this example are
very stiff, the first vibration mode dominates the dynamic structural behavior. As the number

of modes increases, the structural responses will change within a variation of one percent.

Fig. 5.14 shows how the structurzl responses vary with the relative distance, which is
defined as the ratio of the distance between the .centers of the cylinders to the sum of the
radius of cylinders. It is obvious thai the interaction is negligible as velative distance exceeds
4. Also, the difference of the responses betwesn the symmetrical case and the antisymmetrical
case becomes greater as the relative distance decreases. Fig. 5.15 exhibits that the syrmnmetrical
structural responses are shifting to higher frequency as the relative distance decreases, i.e. it
approaches to 1. Fig. 5.16 shows that the antisymmetrical structural responses are shifting to
lower frequency as the distance decreases. Also shoﬁrn in Figs. 5.17-20, if we. move the condi-
tion of refative distance from a big value to a small value so that the interaction is important,
the submerged natural frequency will change with the variation ';Jf 10 percent decrease in the
symmetrical case and 10 percent increase in the antisymmetrical case. Clearly, the variation of

structural respeonses for the higher mode of structural vibration is greater than those for the

.
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lower mode.

The change of structural responses with respect tﬁ water depth is shown in Fig. 5.21. In
the antisymmetrical case, the responsss to the fully-submerged cylinders are six times greater
than those wilh zero water depih. While, in the symmetrical case, the responses to the fully-
submerged cylmders aré oply three times greater than those to the dry cylinders. The
difference of the first modal response in both cases is ncsnglble as water depth is less than 40

percent of the height of cylinder.

The distribution of hydrodynamic forces in the vertical direction is shown in Figs. 5.22-
25 for the first six modes of wave. Two sets of calculations which correspond to different rela-
tive distances, are presepted. From those figures, we can find that the forces are decreasing
gradually by the ascending order of modes. Again, the influences of the cases of symmetry
and antisymmetry are clearly shown. The dimensioniess valuss of the amplitude of hydro-

dynamic forces are listed in Table 5.1 for comparison.
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Figure 5.3 Finite Element Mesh of Example A
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Table 5.1

Complex Amplitude of Hydrodynamic Forces in Example C( -%-1.-‘;“-'--_0.616)
: ; g ) .
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Complex Amplitude of Hydrodynamic Forces (_d_(_z.?_)
pahtiy
d = 1.167 d = 3.000
Mode No.
Symmetry Antisymmetry | Symmetry Antisymmétry
1 0.219, 0.012 | 0.827, 0.193 0.334, 0.029 0.392, 0.039
2 -0.146,-0.G16 .0.751,-0.244 | -0.259,-0.039 | -0.308,-0.051
3 0.074, 0.008 0,359, 0.115 0.134, 0.020 0.154, 0.025
4 .0.048,-0.005 | -0.224,-0.072 | -0.089,-0.013 -0.100,-0.017
5 0.034; 0.00;1 0.151, 0.049 0.063, 0.005 0.079, £.012
6 0.026,-0.003 | -0.109,-0.035 | -0.047,-0.007 { -0.05 2,-0.009
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VI. CONCLUSIONS

According to the discussions in Chapters III, IV, and the examples in Chapter V, we

have made the ollowing conclusions:

1.

An effective numsrical procedure to investigate the hydrodynamic interaction between

structures submerged in fluid induﬁ:ed by ground motion has been develeped.

if the structures have uniform cross sections in the vertical direction, this boundary value
problem can be reduced into two-dimensional one. Otherwise, a three-dimensional

analysis is required for the non-axisymmetrical problem.

For high frequency ground excitalion. the reduced boundary conditions are acceptable.
However, a iransmitting boundary and free surface condition should be considered for

low frequency excitation such as incident waves.

In addition to the horizontal ground motion which has been considered in previous

chapters, the vertical ground motion should also be taken into consideration. For a local

earthquake, the effect of pressure waves which are transmitted from neighboring ground

to the structure through water has not been well understood. .

The agreement of the results from the experiments of physical model on an earthquake
ﬁimulator and the numerical analysis has been shown in Example A in Chapter V. How-
ever, some minor discrepancies are observed. They may be caused by the following rea-
sons: (1) the linearization of the boundary value problem in numericai analysis such ;hat
the hydrodynamic forces, which are along the center line connecting the centers of the
cylinders and are induced by the ground motion perpendicular to this center line, are
neglected, (2} the square basin being constructed to simulzte the unbounded fluid
d.omain such that the boundary conditions of experiments and numerical model are not
exactly the same, (3} the uncertainties in laboratory works including the experimental

equipments, techniques, and data reduction [51).

i e < o
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The aumerical analysis to find the hydrodynamic forces on a non-axisymmetrical struce
ture can also be applied to an axisymmetrical structure. For solvivg the structural
responses of an axisymmetrical structure, it shows that the reselts from the theoretical

analysis {26) and the numerical analsis are of grest similarity. As fhe number of wave

_modes increases, the numerical analysis results approach to the theoretical analysis re'sul!s

asymptotically.

When the distance between cylinders is small, the structural responses induced by ground
motion decrease in the symmeli'ical case and increase in the antisymmetrical case. Com-

paring {o the structural responses when two cylinders are far from each other so that the

interaction is no longer significant, a S0 percent variation for both symmetrical and

antisymmetrical cases is illustrated within the examples in Chapter V. Generally speak-
ing, the hydrodynamic interaction is negligible as the relative distance® exceeds 4; while
it becoraes relevant as the relative distance is less than 2. This phenomenon depends on
the characweristics of structuras, water depth, ampntude and frequency of ground excita-

tion and the relative distance between cylinders.

In designing the offshore structure with two cylindrical legs, it is suggested that the
center line of the cyli_ndérs should coincide with the direction of the expected major

earthquake ground motion in order to decrease the interacted hydredynamic forces. .

For structures with more thzn two legs, the number of cylinders in previous chapters
should be reset accordingly. The distribution of hydrodynamic prassures will become
much more complicated and the interaczion is expected to be significant, however, to the

extent that can not be predicted from the examples in Chapter V.

* Relative distance is defined as the ratio of the distance between the centers of two cyfinders 1o the sum of

the

¢ * ~linders.

T
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j_ 10. In order to obtain more realistic results, the cylinder with cylindrical shell should be con-
sidered. The conventional finite element method can be applied to the structures.
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APPENDIX A _
REDUCED TWO-DIMENSIONAL PROBLEM

VR 8 o T e e s T e O S

_The two-dimensional boundary value problem reduced from three-dimensional Laplace’s

equation 'has been discussed by Wehausen [50], Here, we will present the probiem under the

following two special cases:

i} low frequency excitation with linear wave theory,

ii) high frequencv excitation without considering the gravity wave on the water sur-

face.

1. Three-Dimensional Problem

For a three-dimensional problem, the Laplace’s equation of hydrodynamic pressure in

frequency domain governs. Thus, we have the following expression

g, o, 0,
ax® oy 8z

a.  Boundary Conditions for Case i

The boundary condition 2t the botiom is given by

9-2 -
37 {x,y,0} =0

The linear water surface condition is

[ o -
3s (x,p.h} > plx.p. ) =0

And the radiation condition at the far field is

fim r“(%f-(r,z)-—fkp(r,z}) -0

(A.D)

(A.3)

(A.4)

\



96

where r = (x*+y3* and k comes from the dispersion relation

wl = kg tanh kh

b. Boundary Conditions for Case ii

At the bottom we have the boundary condition

op -
Fp (x,y,0) =0

The simp_iiﬁed free water surface condition is

plx,3,h) =0
The condition at the far field becomes

Qz(r,z) =0
dn

where n is normal to the boundary.

2. Separation of Variables

(A.5)

(A.6)

(A.7)

A8

If the structure has uniform cross section, the three-dimensional problem can be reduced

by the separation of variables,

plx,y, 2} = 5lx,y) F{2)

Thus, Eq. (A.1) can be rewitien as

Vip{x.y) __.?(:} -
plx,y) [

(A.9)

(A.10)
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For the case of low frequenéy excitation, the boundary conditions (A.2) and (A.3)

become
Zo) - |
dz(O} 0 {A.11)
and
G =70 = |
dz(h) gf(h) 0 (A.12)

For the case of high frequency excitation, the boundary conditions (A.5) and (A.6)

dz!

become
u—dz -
dz(U) 0 (A.13)
and
Fn)y =0 (A.18)
2 IA=—k<0
In this case, Eq. {A.10) becomes
QAR TR (A15)

Providing the boundary conditions (A.11} and (A.12) for case i to Eq. {A.15), we get
F(z) = ¢ cosh k= e (A.16)
with

@!= kg tanh kh S (A.5)
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where ¢ = 2¢; = 2¢3

Similarly, substituting the boundary conditions (A.13) and (A.14) for case ii into Eq.

(A.15), we obtain
FD =0 (A7)
Since the hydrodynamic pressi.ire is not equal to zero in water, the assumption that

A = k2 < 0 does not apply to the case of high frequency excitation.

b. IfA=k>0

In this case, Eq. (A.10) becomes

-ﬁ‘:[(z) + 3f(z) =0 (A.18)

Substituting boundary conditions (A.11) and {A.12) for case i into Eq. {A.18), we get
F(z) = cxos kz - (A.19)
with

wl= —kgtan kh (A.20)

Similarly, substituting the boundary conditions {A.13) and (A.14} for case ii into Eq. Eq.

{A.18), we can find

k,-ﬁif)—i for i3 1 (A.21)

?-
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3. Two-Dimensional Problem

a. Case i of Low Frequency Excitation

From Egs. (A.10) and (A.16), the following equation is obtained:

V5e(x,3) + kdpplx,y) =0

“with

Polx,y,2) = Polx,5) cosh kpz

where kqis given by the dispersion relation

w?= koz tanh kyh

From Egs. {A.10),(A.19) and {A.20), we can derive
3500y} = k2B lx,y) =0

with

"
pix.3.2) = 3 cp,{x,y} cos k;z
=1

where k; is given by

w?m= —kg tan kh

Combining the above equations, we get

. .
p{x,p,2) = cgBolx,y) coshkoz+ ¥, ¢;5,(x,») cos k;z
=1 .

(A.22)

{A.23)

(A.5)

(A.24)

{A.25)

(A.20)

(A.26)
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b.  Case ii of High Frequency Excitation

From Eqs. (A.10) and (A;zl), we have

V3 xy) = kilx.y) =0 (A27)
with
plx,y,2) = gc,i,(x, yicos k;z -I | (A.Zsj
where
k= (L—'f-)l | (A.2D)

The hydrodynamic pressure in this case is independent of the frequency of excitation.
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APPENDIX B

LOCALIZED FINITE ELEMENT METHOD FOR HIGH FREQUENCY EXCITATICON

A reduced iwo-dimensional boundary value problem of hydrodypamic pressure in fluid
domain can be solved by the localized finite element method which divides the fluid into inner
and outer subdomains [27]. The following discussions of excitation in high frequancy are

based on the derivations in Chapter IV,

1.  Inner and Outer Domsins

_ As shown in Fig. 4.2, a transmitting boundary S, was located near the structure in order
to separate the infinite fluid ﬂomai-n into innar.domain R, and outer domain R The trun-
cated ﬁnite_ domain R, will be discretized into a number of finite elements which can be
approached by the conventional finite element technique. The hydrodynamic pressure in the

infinite outer domain R; will be representad by 2 finite number of eigenfunctions.

Let 5y, and Bs, denote the i-th mode hydrodynamic pressure in R; and R; respectively,
then we have the following two-dimensional problems where the boundary conditions on water

surface and the bottom are reduced.

In inner dom:ain, we have § = Sy {J) Sp {J Spand

V51(x,9) ~ & By (x,y) = 0 | B

with the interface boundary conditions

ap iy -
3n {x,3.2) = —pii'{z}cosh j=1,2

In the outer domain, we have S = S, | ) 5, and

g 4 1 R e
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V%1%, = X Palx.y} =0 (8.2)
J
with the far field boundary condition
33
_P?-.f_( x, y) - 0
on
On the transmitting boundary, two conditons are required as follows:
™ Pu (B.3)
and
3 _ _ 97
on dn
- where the normal vector n is taken outwards from each region.
1f we take the cylindrical coordinates into consideration, then
a_-' a.— T
pu Pu (B.4)

With the transmitting boundary conditions, Py; and py, will have unigue solutions.

2,  The Functional

Apolying the crinciple of variation to the problem in the inner domain, the following

functional is' formulated for each mode of wave { see Chapter III and Appendix A ):

2
Fuzad = wJ [[Tmotam et~ Z st as
1 i =13y

+ {(5”-’)‘152:)31.-.;45' (B.5)
»
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" where BB denote ——, ——— respectively, and f,/ is shown in Eq. (4.29).

dn' on

The variation of F is given by

) 2
oF = [ [ V51405185 ey + 3 [ (Brumf 851,45
: R, . P15y

+ { [(51 w+Br) 851,451 82— (5145521.'?52;;3.-021)] as (B.6)
- 7Y :

If the Green's Theorem is applied to i, and 87, in the outer domain, then we have

S [omom i emd) dsts = [ GoubPaPraa) 85 ®7)
1 2

By the basic assumption of potentizl flow theory, the integral on the lefi-hand side will

vanish. Thus, the boundary integral on 53 becomes

{ (FradPr~Fr8Fru) dS =0 (5.8)
' .

Substituting Eq. (B.8) into the variation of the functional, Eq. (B.6), we will obtain che same

result as shown in Fq. (4.34). Since the variations 3p,, 871, 3714 and 87;,, are arbitrary
values, each integral in the above expression will disappear on the boundary or in the domain,
Therefore, Eqs. (b.1) and (B.3) are obtained and the vaiues of py, Py, derived from the func-

tional will be the solution of the boundary value problem.

3. Finite Element Technique
Let the inner domain R; be divided into a finite element mesh with nodal points in each
element. Introducing the interpolation function associated with' each node, each element can

be represented s

e
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Pu= ﬂl: 8.9)

where | i# the number of wave mode and M is the shape function.

In the outer domain, a set of properly chosen eigenfunctions 134) will be used. For each

i-th mode of wave, we have

. - _ .
pr= 39 iFn - (B.10)
=t .
where
a1
= L V= ¥pu _ (B.11)
=0 .
and
V= e cos(lo—8) (8.12)

with r={x;+y2)* and ¢ being the mode shape of wave as shown in Eq. {4.29).

Fiom Eqs. (B2 (B 12, the siationary point of the !'--':ct-ch, Eq. (B.5), with respact to

P and B3, can be found by the following equations

aF(.QI ilE:I) - 0

i1 13.2)
d2u @132
and
8F(FB2) _ o (B.13.b)

aﬁn'
Substituting Eqs. (B.10) and (B.11)} into Egs. {B.13.a) and (B.13.b), We oblain

2
&~ 5T [NTSids =0 (B14)

J=l e Sf)‘

):J' f (TNTTN+A NTN) dedvB) ,—2{

[

~
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and
T .
—[):{ _&"zm] B[ (LT YY) &5y O @19
LTS ) > :

i the cylindrical coordinates are applied to Eq. (B.4), then the results as shown in Eq. (4.40}

is derived

According 1o the decomposition procedures described in Chapter IV, Eq. (B.16) can be solved

for the amplitude of hydrodynamic pressure for each mode of wave.

Au du (B b
coll bl e

\
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APPENDIX €

DYNAMIC RESPONSE OF A SINGLE FLEXIBLE CYLINDER SURROUNDED BY WATER

The analytic solution to the simple harmenic ground acceleration is presented here [26].
This solution is limited to the fundamental mode of structural vibration since the dynamic
responses in modal coordinates do not remain uncoupled when hydrodynamic interaction is

included.

1. Equation of Motion
Considering a linearly elastic cylinder governed by beam theory, the equation of motion
in the first mode of vibration, subjected to horizontal ground acceleration i, (¢}, can de

expressed in terms of the generalized coordinates,

M () + CN) + K () == () 4y — Fy(o) @D

Let ¢4(2) and w; denote the mode shape and frequency of structural vibration in the air
respectively, m(z) be the mass per unit length, and H be the height of cylinder. Thus, the

generalized characteristics of the _cyliuder can be derived by

M= .fm(z)qa.’(z}dz (C.2)
Ky~ w*M, o (c.3)
Cy= 28w M; : (c4
._Al-_fm(z)q‘.n(z]dz .5

and, the foliowing equation can represent the generalized load which is associated with
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hydrodynamic pressure acting oa the surface of the cylinder

e
Fy=- jm(z)_rp(a,z.o. 1) acos@do dr . .6
0 (]

where p{a,z,8.1) is the hydrodynamic pressure on the surface of the cylinder as r = a, and

pla,z.0,1) = pla.z,0,0)c0s6.

The responses to harmonic ground acceleration i (£} = ™' will be given by
Y (&) = Vilw)e™
Fi) = 7i(w)e «.n

i;;(w) - —w’ Yltm}

and the acceleration on the surface of the tower is

() = 11+ ¥, () ()] e™cosd .9

2. Wave Equation

The hydrodynamic pressure in fluid domain can be treated as an axisymmetrical problem

governed by the foilov:ring wave equation in cylindrical coordinates

&p, top 18 3 _ 1 &%
art 3 3r * 7 a8’ * 4z  C*ar €9

with the boundary coaditions

82(, 060 =0 | €19
gz _

2
-g—:;(r.h.a, N+ g%{i(r. 8, =0. . (C.11)

B :
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%E-(a,z,o.r) m —pl1+ ¥, (@) (2)IcosBe™ | (€12
_—g—g—(r,z.o, )= —g‘g-(r.z.fr, D=0 | €.13)

where C is the velocity of sound in water, which is equal to 4720 fps, p is the mass density of

water, and a is the radius of the cylinder.

The response to the harmonic ground accelsration will be

P = plw)e™ ' (C.14)
and plw) can be decomposed into
plw) = py + ¥ila)py - {C.1%)

where pg and py are the values of p; with & = 0,1 solving from the wave equation, Eq. (C.9),

and the following boundary conditions '

82,06, =0
a9z .
ap Wl
(r,h,0.@) = —p(r,h.0,u) =0 {C.16)
9z g"
%%(a,z.ﬂ,m) = —p, (z)cosh

3 =9 -
36 {r,z,0,w) 30 {(r,z,m,w) =0

while ¢g(z) = 1 and ¢1(2) is the first mode shape of the cylinder in the air.

e e
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3. Structural Response and Hydrodynamic Pressure

The complex frequency response function for the above problem is

Pile) - A+ Bulw) €amn
M1+ 206,22 + (59— Bylw)
w @
where
n
B, - ftb;(z)fpgacusedsa& k=01 {C.18)
(] (]

For cylinder with no surrounding water, we have By = 0.

As mentioned in the previous section, p; can be solved from Egs. (C.9), (C.15) and

(C.18) for a steady state solution as follows: .

ag I
g 2aph+sinh(2aph)

la,z,0,0) = 8pf Do(aoalcosh{agz) e'o” C19)

» -1 e, fm

- E, Mu 20 A tsinCa )

D\ ,a)cosla z)e "

= Oy Fiem vy
+ :_j_",m’ . TanhtsinOanh) En(\, a)cos{a 4z} }cos8

where m is the smallest integer value of mr such that ,, > %‘. ag and o, are the solutions

Of
a{ianh (aﬂh)

2
atan{o,, h) = -9;—



moreover,

[D.{A ,a))? =

L= _f-t «{2)cosh{agz) dz
(]

fim = fcbt(z}cos(a m:) daz
L}

(5O + [ VA,

K'[(X ,,.'a)

[Joh @) =T2lA m@) ]}y + [ Yok na)= Yilh qad1?

E O\ qa) =

Kol pal + K4la ,,'d)

IYQ(RMG)“ Y;(A,,,a)]]lik,.a) - [Jﬁ(lmﬂ)-.’:(l"ﬂ)} Ylﬁh,..a)

[JolA wa)=JS3( na}lJy(A na) + [¥olx pa)—Yilh )1 (A na)

with J,, ¥, being the Bessel functions of order n of the first and second kind respectively, and

K, being the modified Bessel function of order n of the second kind.

For high frequency vibration, the surface wave is ignored. The boundary condition at -

the free surface can be replaced by

plr i) =0

(C.20)

If the compressibility of water is also neglected, the above solution, Eq. (C.19), can be

simplified by substituting C = = into the expressions. The simplified hydrodynamic pressures

on the surface of the cylinder pecomes

AR i i e i A e - et
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pila,z,8.w) =8p f -(—-{*ﬂ'—f,.(x m@)o0s (@ ,z)éosﬂ (C.21)
=l :

2m—-1)n

.o

= Qm-Dn

T The total hydrodynamic force per unit length in Z-dircction

in which Ao ™ ap

will be computed from the following integral

1 .
pl2) = fpk(a,z.ﬂ,w} acosf dg ' (C.22)
°

It is easy to see that p, is now independent of the excitation frequency w and in phase

‘with the excitation for all frequencies,
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APPENDIX D
THE COMPUTER PROGRAM HYDR

The purpose of thic computer program HYDR is to determine the elastic dynamic
responses of two circular cylinders partially submerged in water to the horizontal earthquake

ground motion.

As indicated before, both the waves at the free water surface and the compressibility of
water are of little influence in the dynamic structural responses to the high frequency ground

excitation. And hence, they are ignored.

This FORTRAN program is based on the numerical analysis dascribed in Chapter IIl and
IV, in which each cylinder with arbitrary radius is treated as either beam type flexible structure

connected rigidly to the ground or rigid structure connected flexibiy to the ground.

The surrounding water is treated as a reduced two-dimensional finite element system
with self-generated mesh. Moreover, the principles of symmetry and antisymmetry are applied
to the problem such that the fluid domain can be reduced to one half. As discussed in Chapter
H, the unknown.nodal hydrodynamic pressures are assigned lﬁ the finite element mesh. The
pressure variation within each element is expressed in terms of nine-node nodal hydrodynamic

pressures, Three-point Gaussian integration is slso applied to the computatinn.

A flow diagram for the program HYDR is shown in Fig. D.1. In order to insure the con-
vergence of the computation, two parameters are considered; ﬁa_mely the number of wave.
mode, #,, and the number of structural vibsation mode, #,. As_ itlustrated from the examples
in Chapter V, the hydrodynamic pressure will convérge by choﬁsing n, = 6. For the value of
n,, we will examine the characteristics of the structure. In the case of rigid cylinders con-
nected flexidly to the sroi.md, the value of n,' is set to be 2, which represents the translation

. and rotation of the structure. In the case of flexible cylinders connected rigidly to the ground,

a small value of n, is sufficient to achieve convergence if the cylinder is very stiff. .

The X-axis of the coordinates system coincides with the line connecting the centers of
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cylinders. For a horizontal ground motion with arbitrary direction, this boundary value prob-
lem is decomposed into the symmetrical and the antisymmetrical case with respect to the X-
axis. The X-component of ground motion retates to the symmetrical case with a symmetrical
stiffness matrix, while the Y-component relates to the antis;rmmetrical case with an asymmetri-
cal stiffness matrix. A variable banded-matrix solver is used to solve the linear equations for
both cases. The solution of the boundary value problem will be the combination of the results

from these two cases.

g e W

P
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Input Structural Characteristics, Water Depth,
Relative Distance, Option for Symmetry or
Antisymmetry, Number of Wave Modes,
Number of Structural Vibration Modes, Ampli-
tude and Frequency of Ground Motion, Define

Finite Element Mesh

b .
] Generate Finite Element Mesh ]

[ Compute the Profile of Fluid Stiffness Matrix |

1

—={ Summation over Wave Modes |-

[ Evaluate Eiement Fiuid Stiffness Matrix |

Assemble Total Fluid S5tiffness Matrix and
Loading Vector

' Solve the Amplitude of Hydrodynamic Pressure

in Fiuid Domain

Evaluate the Amplitude of Hydrodynamic
Forces on the Cylinders

¥

Compute Added Masses by the Summaltion

over Wave Modes

£

Compute Structural Responses and Hydro-
dynamic Forces of the Cylinders

Figure D.1  Flow Diagrarn of Program HYDR
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